@amirsaeedsheikh0: Akshay kumar best funny movie scene part 1#best #2023 #fyp #viral #bestmoviesscene #movieclips #southindian #LaysEverywhere #comedy

Panadol hun yar👻
Panadol hun yar👻
Open In TikTok:
Region: PK
Tuesday 16 May 2023 11:06:38 GMT
621562
25147
1107
1826

Music

Download

Comments

1hussainigirl
1hussainigirl :
I love akki😂☺️☺️☺️
2024-06-17 22:12:44
23
sadafsindhi0
sadaf Sindhi :
movie name
2024-05-30 09:08:32
12
mimranmokal3
M. Imran :
movie name insaan
2024-06-19 12:12:08
18
angeleye180
Angle eye :
movie name?
2023-05-20 03:33:39
11
hussainali9042
🥰 :
movie name
2024-04-05 21:34:23
5
sitamalik8sita0
moon🌙👀 :
movie name plz tell me
2024-08-22 11:36:24
2
silently262
silently :
Movie name
2024-11-12 17:14:10
1
barbie.12487
Barbie 124 :
movie name
2023-08-25 08:26:10
4
ismilabrand
ismila Brand official ✓ :
hella 😅
2024-09-16 11:38:10
3
user615886322
user615886322 :
😂😅very funny 😅
2024-10-23 06:32:31
1
mahirakhan0025queen
Mahii :
support my videos please
2024-12-18 11:17:19
0
fiaz6835
fiaz :
beautiful 😍
2024-12-15 16:40:42
0
user9574952666097
vishen :
I'm a big fan of u
2024-11-30 20:42:15
0
reditalez
pets :
bhai plz mujeh thora guide kerde mai jo bhe movie clip lagau remove hojati hai even after editing and ratio changing plz can you guide a little it would mean alot thankyou.
2024-08-15 17:23:10
0
sadafqueen220
❤️sadaf❤️ :
koi muj sy dosti ker lo 🥰🥰🥰
2024-09-08 06:58:05
20
shahfahad6703
༺ ᴹᴿ乂ꘘคнαᴅ࿐ :
Halla😂
2024-09-11 04:52:37
8
waxiri555
fast • KHAN :
Majid Bhai 😂😂
2024-09-09 16:13:05
3
paeer7979
PAEER :
nivCe
2024-07-19 02:15:55
4
khan.dukhii
Khan dukhii :
@khandukhii
2024-09-08 00:46:04
2
a.basit__10
they_call_me_bassuu :
hale..hale..ha ha ...hale😂😂😂
2024-08-08 10:58:17
2
maystory409
maystory409 :
Me hun na
2024-10-10 14:11:48
1
jahangir__official__302
🦅Jahangir_Jani😘🦅 :
n
2024-05-16 17:41:00
1
pkaur165
pkaur1 :
Akshay 😍
2024-12-07 17:17:44
0
munna41k
𝙼𝚞𝚗𝚗𝚊🦋🌼 :
Akshay sir 🥰
2024-11-17 14:47:44
0
funnyreels29
funny reels 😂 :
♥️♥️q movie clips follow me
2024-09-05 07:09:16
1
To see more videos from user @amirsaeedsheikh0, please go to the Tikwm homepage.

Other Videos

🔹 What is Kafka? Apache Kafka is a distributed event streaming platform designed for high-throughput, fault-tolerant, and scalable data pipelines. 🔹 Core Concepts: 1. Topics: Categories for streaming data 2. Partitions: Distributed, ordered logs within topics 3. Producers: Applications sending data to Kafka 4. Consumers: Applications reading data from Kafka 5. Brokers: Servers hosting topics and partitions 6. Consumer Groups: Scalable, fault-tolerant consumer clusters 🔹 Key APIs: • Producer API: Publish streams • Consumer API: Subscribe to topics • Streams API: Stream processing • Connect API: Build/run reusable producers/consumers 🔹 Advanced Features: • Exactly-once semantics • Transactional writes • Idempotent producers • KRaft (Kafka Raft): Replacing ZooKeeper for metadata management 🔹 When to Use Kafka: • Real-time data pipelines • Activity tracking • Metrics collection • Log aggregation • Stream processing • Event-sourcing • Commit log service 🔹 Alternatives: • Apache Pulsar: Multi-tenancy, geo-replication. Use when: need tiered storage, multiple namespaces • RabbitMQ: Complex routing, low latency. Use when: priority queues, request-reply patterns crucial • Amazon Kinesis: Fully managed. Use when: AWS ecosystem integration paramount • Google Pub/Sub: Global message bus. Use when: multi-region, exactly-once semantics required   🔹 Kafka shines in: • Large-scale data pipelines • Microservices event backbone • Real-time analytics and ML feature stores 🔹 When to reconsider: • Small-scale applications (overhead may outweigh benefits) • Strict ordering requirements across all messages • Need for complex message routing What's your take on Kafka vs alternatives in production environments?  Any performance insights to share?
🔹 What is Kafka? Apache Kafka is a distributed event streaming platform designed for high-throughput, fault-tolerant, and scalable data pipelines. 🔹 Core Concepts: 1. Topics: Categories for streaming data 2. Partitions: Distributed, ordered logs within topics 3. Producers: Applications sending data to Kafka 4. Consumers: Applications reading data from Kafka 5. Brokers: Servers hosting topics and partitions 6. Consumer Groups: Scalable, fault-tolerant consumer clusters 🔹 Key APIs: • Producer API: Publish streams • Consumer API: Subscribe to topics • Streams API: Stream processing • Connect API: Build/run reusable producers/consumers 🔹 Advanced Features: • Exactly-once semantics • Transactional writes • Idempotent producers • KRaft (Kafka Raft): Replacing ZooKeeper for metadata management 🔹 When to Use Kafka: • Real-time data pipelines • Activity tracking • Metrics collection • Log aggregation • Stream processing • Event-sourcing • Commit log service 🔹 Alternatives: • Apache Pulsar: Multi-tenancy, geo-replication. Use when: need tiered storage, multiple namespaces • RabbitMQ: Complex routing, low latency. Use when: priority queues, request-reply patterns crucial • Amazon Kinesis: Fully managed. Use when: AWS ecosystem integration paramount • Google Pub/Sub: Global message bus. Use when: multi-region, exactly-once semantics required 🔹 Kafka shines in: • Large-scale data pipelines • Microservices event backbone • Real-time analytics and ML feature stores 🔹 When to reconsider: • Small-scale applications (overhead may outweigh benefits) • Strict ordering requirements across all messages • Need for complex message routing What's your take on Kafka vs alternatives in production environments? Any performance insights to share?

About