@hadi_sr: How many times did I say “approximately” and “one” in this video? How I approximated 68-1 (67 😂🫱) #math #maths #approximation #67 #fyp (long form content on tiktok trial)
WAIT!!!! in short u just square root the answer which is 67 and get 8.185355.
And then u just square the 8.185355 to get the proximate which is 67.000036476?
2025-08-27 07:00:11
174
o gato facharo :
que no el hablaba español?
2025-08-30 03:58:33
0
kuwkuw :
2025-08-27 08:07:35
516
Jotaro's Dog :
Understand:50%
Trust:50%
2025-08-27 08:09:51
277
TheGingMason🇮🇪 :
dude I was just bouta say that vro
2025-08-27 04:30:07
1273
️ :
bro I don't understand why you got ½
2025-08-27 07:25:19
7
- :
But because you binomially expanded it, it becomes inaccurate.. as it’s an infinite series. Then newton raphson is also an estimate and not exact value.. you can do this with any number .. similar to how 0.99999… = 1
2025-08-27 15:40:18
1
lil' 'cado :
root 68 is not 8 bru
2025-08-28 02:50:03
0
dunky :
took the words right out of my mouth
2025-08-27 07:49:12
137
Poison :
2+2=4
Teacher: Nah it’s 5-2=3
in exam x² da y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx19 V = x [-x-12 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx
V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx 19 V = x [-x-12x3-7 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32 9 - x² y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (X4 - 19x2 - 14x + 32) dx19 V = x [-x-12 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx
V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx 19 V = x [-x-12x3-7 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) como saben 9 - x² produce y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx19 V = x [-x-12 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx
V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx 19 V = x [-x-12x3-7 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14X + 32) dx19 V = x [-x-12 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx
V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx 19 V = x [-x-12x3-7 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) = ??
2025-08-31 14:08:35
0
𝓓𝓪𝓷𝓲𝓮𝓵_. :
79 - x² = x + 7 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx19 V = x [-x-12 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx
V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx 19 V = x [-x-12x3-7 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32 9 - x² y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (X4 - 19x2 - 14x + 32) dx19 V = x [-x-12 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx
V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx 19 V = x [-x-12x3-7 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) como saben 9 - x² produce y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx19 V = x [-x-12 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dxV = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx 19 V = x [-x-12x3-7 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14X + 32) dx19 V = x [-x-12 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dxV = π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) dx 19 V = x [-x-12x3-7 y = x + 79 - x² = x + 7 Entonces x = 1 y x = -2 V = π112 (9-x2) ² - (x + 7) 2dx V =π12 (x4-18x² + 81) - (x² + 14x + 49) dx V = pi / 12 (x4 - 19x2 - 14x + 32) =51- x² da y = x + 79 - x² = x + 7 Entonces x = 1 y x = 67
2025-09-06 10:44:57
0
hybrid_silver :
2025-09-02 05:24:21
0
BigJim1337 :
2025-08-27 09:34:47
58
Ben :
So you're just approximating rooting then squaring? 😭
2025-08-27 16:30:02
35
lil flacko :
does ts count as studying? ✌️
2025-08-27 19:31:38
4
Trùm Phản Diện😈😈😈 :
37-1
2025-08-27 04:05:48
0
♠️🕸️exe🕸️♠️ :
2025-08-29 08:25:33
0
ALEXIS :
I love how when he says 67 and his arms sway up and down 🤣🤣🤣
2025-08-27 12:20:35
4
SoySauceMaster :
Hey bro
2025-08-27 04:51:17
0
3ZOZ🇸🇦 :
can you do 67+67
2025-09-07 15:17:44
0
Bush :
Bro finally actually showed his work
2025-08-27 23:11:21
0
𝑠𝑎𝑚 :
I'm 16th comment and early
2025-08-27 06:20:50
0
J :
yeah bro stop talking and let me copy you on the test
2025-08-30 17:49:09
0
Jajasusus :
can you do 1+1
2025-08-27 18:35:24
0
To see more videos from user @hadi_sr, please go to the Tikwm
homepage.